Cost-Optimal and Net-Benefit Planning - A Parameterised Complexity View
نویسندگان
چکیده
Cost-optimal planning (COP) uses action costs and asks for a minimum-cost plan. It is sometimes assumed that there is no harm in using actions with zero cost or rational cost. Classical complexity analysis does not contradict this assumption; planning is PSPACE-complete regardless of whether action costs are positive or non-negative, integer or rational. We thus apply parameterised complexity analysis to shed more light on this issue. Our main results are the following. COP is W[2]-complete for positive integer costs, i.e. it is no harder than finding a minimum-length plan, but it is para-NPhard if the costs are non-negative integers or positive rationals. This is a very strong indication that the latter cases are substantially harder. Net-benefit planning (NBP) additionally assigns goal utilities and asks for a plan with maximum difference between its utility and its cost. NBP is para-NP-hard even when action costs and utilities are positive integers, suggesting that it is harder than COP. In addition, we also analyse a large number of subclasses, using both the PUBS restrictions and restricting the number of preconditions and effects.
منابع مشابه
A Multi-Parameter Complexity Analysis of Cost-Optimal and Net-Benefit Planning
Aghighi and Bäckström have previously studied cost-optimal planning (COP) and net-benefit planning (NBP) for three action cost domains: the positive integers (Z+), the nonnegative integers (Z0) and the positive rationals (Q+). These were indistinguishable under standard complexity analysis for both problems, but separated for COP using parameterised complexity analysis. With the plan cost, k, a...
متن کاملIn Search of Tractability for Partial Satisfaction Planning
The objective of partial satisfaction planning is to achieve an as valuable as possible state, tacking into account the cost of its achievement. In this work we investigate the computational complexity of restricted fragments of two variants of partial satisfaction: net-benefit and oversubscription planning. In particular, we examine restrictions on the causal graph structure and variable domai...
متن کاملComputational Complexity of some Optimization Problems in Planning
Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computatio...
متن کاملProject Scheduling with Simultaneous Optimization, Time, Net Present Value, and Project Flexibility for Multimode Activities with Constrained Renewable Resources
Project success is assessed based on various criteria, every one of which enjoys a different level of importance for the beneficiaries and decision makers. Time and cost are the most important objectives and criteria for the project success. On the other hand, reducing the risk of finishing activities until the predetermined deadlines should be taken into account. Having formulated the problem ...
متن کاملA Model for Runway Landing Flow and Capacity with Risk and Cost Benefit Factors
As the demand for the civil aviation has been growing for decades and the system becoming increasingly complex, the use of systems engineering and operations research tools have shown to be of further use in managing this system. In this study, we apply such tools in managing landing operations on runways (as the bottleneck and highly valuable resources of air transportation networks) to handle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015